abcdeffa's Blog

当局者迷,旁观者清。

0%

GMOJ S5020 【牛奶装瓶】

Description

给你 $n$ 个数,$m$ 个操作,支持区间加、区间除然后向下取整、区间最小值、区间和。

Solution

除了 「区间除然后向下取整」 这个操作比较难处理以外,其他操作都可以简单地用线段树来维护。

考虑如果当前递归到一个区间,区间内最大值和最小值减少的值一样,就可以把原操作变为区间减了。

这个的时间复杂度可证明为 $O(n \log n \log C)$,其中 $C = 10^9\text{(值域)} + 10^4 q$,但我并不会证明。

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
#include <cmath>
#include <cstdio>
#define maxN 100010
struct tree{ long long min, max, sum, tag; } a[maxN << 2];
const long long inf = (1LL << 60LL);
long long A[maxN];
long long Min (long long x, long long y)
{
return x < y ? x : y;
}
long long Max (long long x, long long y)
{
return x > y ? x : y;
}
void build (long long now, long long l, long long r)
{
a[now].min = inf;
a[now].max = -inf;
a[now].sum = a[now].tag = 0;
if(l != r)
{
long long mid = (l + r) >> 1;
build(now << 1, l, mid);
build(now << 1 | 1, mid + 1, r);
a[now].sum = a[now << 1].sum + a[now << 1 | 1].sum;
a[now].min = Min(a[now << 1].min, a[now << 1 | 1].min);
a[now].max = Max(a[now << 1].max, a[now << 1 | 1].max);
}
else
{
a[now].min = a[now].max = a[now].sum = A[l];
}
}
void pushdown (long long now, long long l, long long r)
{
if(!a[now].tag || l == r)
{
return ;
}
long long mid = (l + r) >> 1;
a[now << 1].min += a[now].tag;
a[now << 1].max += a[now].tag;
a[now << 1].sum += (mid - l + 1) * a[now].tag;
a[now << 1].tag += a[now].tag;
a[now << 1 | 1].min += a[now].tag;
a[now << 1 | 1].max += a[now].tag;
a[now << 1 | 1].sum += (r - mid) * a[now].tag;
a[now << 1 | 1].tag += a[now].tag;
a[now].tag = 0;
}
void change (long long now, long long l, long long r, long long L, long long R, long long x)
{
if(l == L && r == R)
{
a[now].min += x;
a[now].max += x;
a[now].sum += (r - l + 1) * x;
a[now].tag += x;
return ;
}
pushdown(now, l, r);
long long mid = (l + r) >> 1;
if(R <= mid)
{
change(now << 1, l, mid, L, R, x);
}
else if(mid + 1 <= L)
{
change(now << 1 | 1, mid + 1, r, L, R, x);
}
else
{
change(now << 1, l, mid, L, mid, x);
change(now << 1 | 1, mid + 1, r, mid + 1, R, x);
}
a[now].sum = a[now << 1].sum + a[now << 1 | 1].sum;
a[now].min = Min(a[now << 1].min, a[now << 1 | 1].min);
a[now].max = Max(a[now << 1].max, a[now << 1 | 1].max);
}
void work (long long now, long long l, long long r, long long L, long long R, long long d)
{
long long A = (long long)floor(a[now].min * 1.0 / d) - a[now].min;
long long B = (long long)floor(a[now].max * 1.0 / d) - a[now].max;
if(A == B && l == L && r == R)
{
a[now].min += A;
a[now].max += A;
a[now].sum += (r - l + 1) * A;
a[now].tag += A;
return ;
}
pushdown(now, l, r);
long long mid = (l + r) >> 1;
if(R <= mid)
{
work(now << 1, l, mid, L, R, d);
}
else if(mid + 1 <= L)
{
work(now << 1 | 1, mid + 1, r, L, R, d);
}
else
{
work(now << 1, l, mid, L, mid, d);
work(now << 1 | 1, mid + 1, r, mid + 1, R, d);
}
a[now].sum = a[now << 1].sum + a[now << 1 | 1].sum;
a[now].min = Min(a[now << 1].min, a[now << 1 | 1].min);
a[now].max = Max(a[now << 1].max, a[now << 1 | 1].max);
}
long long querymin (long long now, long long l, long long r, long long L, long long R)
{
if(l == L && r == R)
{
return a[now].min;
}
pushdown(now, l, r);
long long mid = (l + r) >> 1;
if(R <= mid)
{
return querymin(now << 1, l, mid, L, R);
}
else if(mid + 1 <= L)
{
return querymin(now << 1 | 1, mid + 1, r, L, R);
}
else
{
long long A = querymin(now << 1, l, mid, L, mid);
long long B = querymin(now << 1 | 1, mid + 1, r, mid + 1, R);
return Min(A, B);
}
}
long long querysum (long long now, long long l, long long r, long long L, long long R)
{
if(l == L && r == R)
{
return a[now].sum;
}
pushdown(now, l, r);
long long mid = (l + r) >> 1;
if(R <= mid)
{
return querysum(now << 1, l, mid, L, R);
}
else if(mid + 1 <= L)
{
return querysum(now << 1 | 1, mid + 1, r, L, R);
}
else
{
long long A = querysum(now << 1, l, mid, L, mid);
long long B = querysum(now << 1 | 1, mid + 1, r, mid + 1, R);
return A + B;
}
}
int main ()
{
freopen("milk.in", "r", stdin);
freopen("milk.out", "w", stdout);
long long n = 0, m = 0;
scanf("%lld %lld", &n, &m);
for(long long i = 1;i <= n; i++)
{
scanf("%lld", &A[i]);
}
build(1, 1, n);
while(m--)
{
long long t = 0, l = 0, r = 0, x = 0;
scanf("%lld %lld %lld", &t, &l, &r);
if(t == 1)
{
scanf("%lld", &x);
change(1, 1, n, l, r, x);
}
else if(t == 2)
{
scanf("%lld", &x);
work(1, 1, n, l, r, x);
}
else if(t == 3)
{
printf("%lld\n", querymin(1, 1, n, l, r));
}
else
{
printf("%lld\n", querysum(1, 1, n, l, r));
}
}
return 0;
}